# gaussian curvature

### Look at other dictionaries:

**Gaussian curvature**— In differential geometry, the Gaussian curvature or Gauss curvature of a point on a surface is the product of the principal curvatures, κ 1 and κ 2, of the given point. It is an intrinsic measure of curvature, i.e., its value depends only on how… … Wikipedia**Curvature**— In mathematics, curvature refers to any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line, but this … Wikipedia**Curvature of Riemannian manifolds**— In mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension at least 3 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous… … Wikipedia**Curvature form**— In differential geometry, the curvature form describes curvature of a connection on a principal bundle. It can be considered as an alternative to or generalization of curvature tensor in Riemannian geometry. Contents 1 Definition 1.1 Curvature… … Wikipedia**curvature**— /kerr veuh cheuhr, choor /, n. 1. the act of curving or the state of being curved. 2. a curved condition, often abnormal: curvature of the spine. 3. the degree of curving of a line or surface. 4. Geom. a. (at a point on a curve) the derivative of … Universalium**Gaussian beam**— In optics, a Gaussian beam is a beam of electromagnetic radiation whose transverse electric field and intensity (irradiance) distributions are well approximated by Gaussian functions. Many lasers emit beams that approximate a Gaussian profile, in … Wikipedia**Gaussian Formula**— Derivation of Gaussian Formula = Carl Friedrich Gauss established a formula based on the relation between the object distance(u), image distance (v) and the focal length of a spherical mirror. That is,: frac {1}{u} + frac {1}{v} = frac {1}{f}Now… … Wikipedia**Radius of curvature (applications)**— The distance from the center of a sphere or ellipsoid to its surface is its radius. The equivalent surface radius that is described by radial distances at points along the body s surface is its radius of curvature (more formally, the radius of… … Wikipedia**Principal curvature**— Saddle surface with normal planes in directions of principal curvatures In differential geometry, the two principal curvatures at a given point of a surface are the eigenvalues of the shape operator at the point. They measure how the surface… … Wikipedia**Scalar curvature**— In Riemannian geometry, the scalar curvature (or Ricci scalar) is the simplest curvature invariant of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the intrinsic geometry of the… … Wikipedia